焊接工艺采用富氩混合气体+实芯焊丝代替原有的CO2气体+药芯焊丝,富氩保护焊接具有熔池可见度好,操作方便、适宜于全位置焊接,同时电弧在保护气体的压缩下热量集中,焊接速度较快,熔池小,热影响区窄,焊接变形小,抗裂性能好,焊接过程中在惰性气体保护下,具有焊接质量好的特点,非常利于焊接过程中的机械化和自动化。但由于电弧的光辐射较强,因此在焊接机器人总体方案设计中,需要设计弧光安全防护装置进行安全保护。为提高焊接效率,采用一次施焊成形的工艺方法,避免由于焊接机器人重复定位而造成生产效率的降低。
焊接机器人应用技术是机器人技术、焊接技术和系统工程技术的融合,焊接机器人能否在实际生产中得到应用,发挥其优越性,取决于这几方面技术的共同提高,而系统工程技术是机器人技术和焊接技术的粘合剂。同样地,焊接设备制造商为了实现机器人自动化焊接,在焊接电源的设计上也做了许多改进,如、机器人可检出焊缝位置使用的高电压,焊接电源做到了内置;与焊接机器人的通信接口方面,现在许多焊机制造商都采用了方便快捷的通信接口。
常见的6轴关节机器人的机械结构:六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大。6轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动。小型的6轴关节机器人的腕部关节主要采用谐波减速器。常见的6轴关节机器人的腕部结构,其腕部关节用到了两个谐波减速器,两个同步齿型带传动输入,中间还用到了一对锥齿轮副传动。
氩弧焊机器人具有三个或更多可编程的轴,用于工业自动化领域。为了适应不同的用途,机器人个轴的机械接口,通常是一个连接法兰,可接装不同工具或称末端执行器。焊接机器人就是在工业机器人的末轴法兰装接焊钳或焊(割)枪的,使之能进行焊接,切割或热喷涂。机器人硬件部分采用的是柔性控制,将PLC和触摸屏完 美结合之后,就能实现控制的自动化、远程,化从而有效的达到高精度的控制效果。由于机器人针对不同规格,不同形状的产品,它的控制方式也是不同的,因此要注意从各方面使硬件部分达到更佳。
能够实现高品质焊接,得到优良的焊缝。这是由于电弧在惰性气体中极为稳定,保护气体对电弧及熔池的保护很牢靠,能有效地排除氧、氮、氢等气体对焊接金属的侵害。焊接过程中钨电极是不熔化的,故易于保持恒定的电弧长度,不变的焊接电流,稳定的焊接过程,使焊缝美观、平滑、均匀。焊接电流的使用范围通常为5~500A。即使技术电流小于10A,仍能正常焊接,因此特别适合薄板焊接。如果采用脉冲电流焊接,可以方便地对焊接热输入进行调节控制。在薄板焊接时无需填充焊丝。
高素质的管理人员、技术人员和操作人员是机器人充分发挥效率的必要条件。一个企业焊接机器人使用的好坏,很大程度在于人,因此要保证有一支稳定的工作队伍。那么焊接机器人出现故障及解决办法是什么?(1)发生撞枪。新型激光焊接机器人可能是由于工件组装发生偏差或焊枪的TCP不准确,可检查装配情况或修正焊枪TCP。(2)出现电弧故障,不能引弧。激光焊接机器人价格可能是由于焊丝没有接触到工件或工艺参数太小,可手动送丝,调整焊枪与焊缝的距离,或者适当调节工艺参数。(3)保护气监控报警。冷却水或保护气供给存有故障,检查冷却水或保护气管路。